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It is found that the criteria for discretization of the differential equations of the finite 
difference method and the finite element method are unreliable for solving the inadequate data 
problems. A better and sharper criterion is adopted here. It is to approximate the solution by 
a linear combination of the known data such that the norm of the pointwise error is 
minimized. Two different numerical methods, the projection-like method and the collocation- 
like method, which adopt this criterion are presented here. For simplicity, only linear ordinary 
differential equations are considered. Numerical simulations are carried out for several 
examples of stiff initial value problems. Here it is found that both the projection-like method 
and the collocation-like method are superior to the finite difference method and the finite 
element method. In particular, a comparison is made between the projection-like, the 
backward Euler’s and the trapezoidal finite difference methods with unbiased interpolation of 
the inadequate data in solving both stable and unstable stiff problems. One again finds that 
the trapezoidal finite difference method fails miserably and the backward Euler’s finite 
difference method gives better results but still is inferior to the projection-like method. 

I. INTRODUCTION 

While the numerical methods for solving the traditional problems of differential 
equations, e.g., the finite difference method, the finite element method, their hybrids, 
etc., are quire well developed, the numerical methods for solving the new class of 
problems, the inadequate data problem, are still in their infancies. The traditional 
problem is to construct the numerical solution of the well-posed problem, 

N4x) = f(x) in 0, 
(1.1) 

Wx) = bw on 852, 

where N is a nonlinear partial differential operator; B is the boundary operator; S is 
a bounded region in lYl (the l-dimensional Euclidean space); 8~2 is the boundary of 
a; x is a point in U, ; f(x) and g(x) are given functions in a function space and are 
known for every x in L2 + ~3~2. The so called inadequate data problem is the same as 
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the above-mentioned traditional problem except that the values of f(x) and g(x) are 
known only at very few sparse points, x 1, x2 ,..., x, E (Q t 80). Indeed, this type of 
problem does arise often from remote sensing experiments in atmospheric, oceanic, 
geophysical, medical, environmental and other physical sciences. There the values of 
f(x) and g(x) are measured data at very sparse physical locations. 

T-0 solve this type of inadequate data problem, one at once faces severe difficulties. 
For example, how can one choose a proper computational grid? Obviously, at least 
every point {xj],j= 1, 2 ,.,., 12, where f(x) and g(x) are known should be a node of the 
computational grid. If these are the only nodes of the computational grid, due to the 
sparseness of the nodes the numerical solution obtained by using either the finite 
difference method or the finite element method will be terribly inaccurate In 
particular, the difficulty in computing the scalar products of f(x) and g(x) with basis 
functions makes the finite element method more undesirable for the inadequate data 
problem. The error estimates for conventional discretization are usually of the form 
C~‘U(~)(K), where C is a known constant, r and u are known positive integers, Iz is the 
typical grid size and K is an unknown point in 8. Since h is rather large, the error 
estimates become meaningless. Hence to seek a higher order scheme is definitely not 
the answer to the inadequate data problem. If more nodes are added to the 
computational grid where f(x) and g(x) are not known, the question of how to inter- 
polate the values of f(x) and g(x) at these additional nodes poses a serious problem. 
If a biased interpolation of the inadequate data is used, Le., a priori knowledge of the 
properties of f(x) and g(x) between the original nodes is incorporated into the inter- 
polation, then the accuracy of the numerical solution obtained by using either the 
finite difference method or the finite element method will be greatly improves. 
However, if an unbiased interpolation of the inadequate data is used, there is a 
chance that it will lead to erroneous interpolation which can in turn lead to ~urneri~a~ 
solutions which are less accurate than those with no additional nodes. 

Next, what is the suitable numerical method or methods for solving this type of 
inadequate data problem or what is a better criterion for the diseretization of (1. l)? 
Obviously, the criteria of the finite difference method and the finite element method 
are not sharp enough for solving the inadequate data problem. (The criterion for the 
finite difference method is to approximate the derivatives in the partial ~iffe~~~tial 
equation as close as possible; the criterion for the finite element method is to approx- 
imate the solution by a linear combination of basis functions (uj(x)], j = 1, 2,..., 1, 
whose coefficients are chosen so that either a quadratic functional of the approximate 
solution is minimized-Ritz method or the scalar products (vj, Nzk -$) = 
j = 1, 2 ,..., J,---Galerkin method.) 

Instead of adopting those unreliable criteria of the finite difference method an 
finite element method, a better and sharper criterion for the inadequate data pr~b~~r~ 
is adopted here. It is to approximate the solution by a linear combination of the 
known linearly independent data such that the norm, unfortunately not the maximum 
norm, of the pointwise error is minimized. Two different numerical metho 
projection-like method and the collocation-like method, which adopt this criterion are 
presented here. This type of criterion was first used in solving the inadequate data 
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problem of the Fredholm integral equations of the first kind by Backus and Gilbert 
[l-3] and later in solving similar problems of the Hammerstein integral equations of 
the first kind by Chen and Surmont [4-61. Later, the classic paper of Golomb and 
Weinberger [7] on optimal approximation and error bounds suggested to us the way 
of extending the above optimal criterion to the inadequate data problem of differential 
equations via “reproducing kernel.” Moreover, in [8] Golomb has demonstrated that 
the projection-like method can be used to solve the traditional two-point boundary 
value problems and in [9] Wahba has estimated its rate of convergence as n -+ co. 
Furthermore, the projection-like methods have also been extended to the case where 
the data are noisy by Wahba and Wendelberger [lo] and a method to determine an 
optimal mesh for the collocation-projection method for solving two-point boundary 
value problems can be found in [ 111. However, they have totally ignored the fact that 
in practice the projection-like method is very inefficient in solving the traditional two- 
point boundary value problems. Unlike [8, 91 where contributions lie in the approx- 
imation theory, here we not only like to demonstrate that the projection-like method 
and the collocation-like method do provide two viable numerical methods for solving 
the extremely difficult inadequate data problem but also to present a few examples 
which show the superiority of these two methods over the finite difference method 
and the finite element method in solving the inadequate problem. 

For simplicity, only linear ordinary differential equations are considered here. The 
inadequate data problem of the linear partial differential equations of various types 
will be discussed in a sequel of this paper. In the next section, some relevant 
mathematical preliminaries are given. In Sections III and IV, the new algorithms of 
the projection-like method and the collocation-like method are presented respectively 
with the error estimations. In Section V, to show that the above-mentioned methods 
can be applied to the initial value problem as well as to the two-point boundary value 
problem, numerical simulations are carried out for five different examples of the 
initial value problem. One example with slow varying solution, one with highly 
oscillatory solution and one with solution having a very steep gradient (stiff problem) 
are solved by using the projection-like method, the collocation-like method, the first 
order backward Euler’s finite difference method and the second order trapezoidal 
finite difference method without interpolating the inadequate data. The last two 
examples are two similar stiff problems, one stable and one instable, which are solved 
by the projection-like method, the backward Euler’s finite difference method and the 
trapezoidal finite difference method with two different grid sizes and unbiased inter- 
polation of the inadequate data. Finally, the discussion of the relative merits of these 
two numerical methods and the finite difference methods are given in the last section. 

II. PRELIMINARIES 

Let X be a closed bounded interval of the real line. A Hilbert space H of real 
functions u defined on X is said to be a “reproducing kernel Hilbert space” 
(R.K.H.S.) if all evaluation functionals Q,(u) _= u(x), u E H, for each fixed x E X are 



DIFFERENTIAL EQUATIONS WITH INADEQUATE DATA 241 

bounded. Then, by Riesz’s representation theorem for each x E X, there exists a 
unique element R, E H such that 

(2.4 R,)jf = u(x), u E w, (21) 

where (e, .)H is the scalar product in N. Let 

wx, Y> = GL ~,hw x,yEZ (2.2) 

which is called a ‘“reproducing kernel” (R.K.), for R,(y) =R(x, y) from (2.1) and 
(2.2). Note that from (2.1) R,(y) has one of the main properties of the Dirac deha- 
function without being one. It is known that any bounded linear functional I on 
possesses, by Riesz’s representation theorem, a unique representer 4 6 H, such that 
for ail u E Ei, a(n) = (u, $)*. In a R.K.H.S., H, this representer can be expressed by 
means of the R.K., i.e., 

WI = W,)? II~llN=l/~lllT=~~~6~~2~ (2.3) 

which gives a way of actually computing the representer $(xX) if R, is Kiowa. Note 
that not every Hilbert space is a R.K.H.S., e.g., L210, 11 is not a R.M.H.S. General 
discussions of R.K.H.S. can be found in [12]. 

Here we consider the boundary value (or initial value) problem of the mth order 
linear differential equation, 

where 

ax> 4x> = f(x>, 24E.z j-EN, XE [6&b], (2.4) 

k=O 

Dk z dk/dxk, 

P,(X) > 0 on [a, b], pk E L,[a, bj, k = 0, I,..., tn. 
(233 

2 = {u E ryu, b]: Bj2.l = 0, i = 1,2,..., m), 
IF-1 

B$4 = 2 {e,,Dku(4 + VikDkU(b)] linearly independent, 
k=O 

(2.6) 

and 111 is a proper Hilbert space. Obviously, the above ordinary differential ~q~ati~~ 
is a well-posed problem. 

Now the inadequate data problem for the above-mentioned differential equation 
can be formulated in the following manner. Suppose that f(x) is known only for t 
set {x, , x2 ,..., x~) E (a, b), where n is a small positive integer. Let 

f(Xj) ~:=Lj(U) ~ Lj, j = 1, 2,..., n. (2.7) 

How can one construct the best approximate solution of (2.4~(2.6) from the only 
available information-the mathematical structure of L(x), B,zl, and the ~~ad~q~a~e 
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data {A}? Before presenting the numerical methods for solving the inadequate data 
problem, some properties of R.K. in Sobolev spaces will be presented in the 
following. 

Let V[LI, b] be the Sobolev space of all real-valued functions defined on [a, b] 
such that u E Cq-‘[a, b], Dq-‘u is absolutely continuous and Dqu E L’[a, b]. From 
the Riesz-Fisher theorem, W[,, b] is a Hilbert space with the scalar product 

(u, v>,= i jb Dku(x) . Dkv(x) dx, u, v E W[a, b], 
k=O a 

P-8) 

and the corresponding norm, 

II 414 = CC% hJ”*. (2*9) 

Here, for convenience we adopt a simpler scalar product 

(u, v), = jb {u(x) . v(x) + Dqu(x) . Dqv(x)} dx 
a 

(2.10) 

and the corresponding norm 

II u II9 = ((u, a7Y2~ (2.11) 

which can be shown to be equivalent to (2.8) and (2.9) respectively by using the 
Ehrling-Nirenberg inequality [ 131. 

THEOREM 1. The Sobolev space W[a, b] (q > 1) is a R.K.H.S. with respect to 
the scalar product (2.10). It possesses the R.K. R:(y) = Rq(x, y) which is the Green’s 
function of the differential operator (-l)q D2q + 1 with boundry conditions D”R:(a) = 
DkR;(b) = 0, k = q, q + l,..., 2q - 1. 

ProoJ: By using the Holder inequality, all evaluation functionals Q,(u) on 
W[a, b] are shown to be bounded, 

Upon integrating this inequality with respect to y from a to b, one obtains 

~~-~~/~~~~1*~<l~II~+~~~-~~ll~lloll~ll, +~~-~~211~ll:=~l/~llo+~~-~~II~ll~~2~ 

Hence 
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Now from the Erling-Nirenberg inequalities, \u(x)\ is bounded for u E W[a, 
Hence FV[a, b] is a R.K.H.S. Performing integration by parts on u(x) = (a, Rz 
one obtains that R:(y) satisfies the differential equation, 

(-1)q D2qRr;(y) + R;(y) = S(Y - x), (2.12) 

and the boundary conditions, 

DkRz(a) = DkRz(b) = 0, k = q, q + l,..., 2q - 1. QED. (2.13) 

Remark 1. R:(y) can be obtained exactly, since (2.12) and (2.13) form a 
boundary value problem of a differential equation with constant coefficients w  
can be solved exactly. 

THEOREM 2. The set {tj}, j= 1, 2,..., II, defined in (2.7) forms a set of ~~~ea~l~ 
independent bounded linear functionals on Wm+l[a, b]. 

ProoJ The boundedness of the linear functionals {Lj = r& p,(xj) DkZl(Xj) 1, 
j = 1, 2 ,..., n, for u E F+‘[a, b] follows immediately from applying the 
Erling-Nirenberg inequalities. 

To showing that {Lj], j = 1, 2 ,..., IZ, are linearly independent on Vi’[a, bl is 
equivalent to showing that the evaluation functionals {Q,), j = 1, 2,..., IZ, are iineariy 
independent on W’[a, b]. Since the set {xj} consists of distinct points in (a, b)? it is 
obvious that (Lj), j = I, 2 ,..., n, are linearly independent on Vf ’ [a, b]. 

Let Gtl[a, b] = {a: u E FV+‘[a, b], u E Z}, so H$+l[a, bj c V+l[av b]. 

-hEOREtvl 3. q’ ‘[a, b] is also a R.K.M.S. with &I., R,“.;“(y), given by 

where 

and 

R:,:'(y) =RT+'(y) - 2 F VjtX>(A'-'jji Wi(Yj3 
i=l j% 

(2.14) 

yj(x) = BjRx”+’ (2.15) 

V)ij= (Wfp Wj>*+l. (2.16) 

The representers corresponding to {Lj}, j = 1, 2,..., n, on Gi’[a, b] are given by 

Proof. e+ l [a, b] is a R.K.H.S. because cYm+‘[a, bj is one. {Bjjr, j = 1, I&,.., I”R, 
can be shown to be linearly independent bounded linear f~~~t~ona~s on ya, bj 
by following the same procedure as that in Theorem 2 where {Li), j = 1, L?,..., YP, are 

58 l/42/2-3 
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shown to be linearly independent bounded linear functionals on Wm+ i [a, b]. Then 
from (2.3) the representer vj(x) of Bj on Wm+i[a, b] is given by (2.15). Finally, from 
the formula for, a R.K. of a subspace [ 141 (2.14) can be obtained. 

Next, from (2.3) the representer (sj corresponding to Lj on e+‘[a, b] is derived. 
Q.E.D. 

Remark 2. The importance of (2.14) is in the fact that it gives a way of actually 
computing R~,~‘(y) and the importance of (2.17) is in the fact that it gives a way of 
actually computing #j(x) from RF,: ‘(y). 

Let S be the n-dimensional subspace of et ‘[a, b] spanned by the representers 
{#j}, j= 1,2,..., n, of {Lj}. Let P, be the orthogonal projection operator from 
q + ‘[a, b] onto S. Then the R.K. of S is given by 

(2.18) 

III. PROJECTION-LIKE METHOD 

Instead of adopting those unreliable criteria of the finite difference method and the 
finite element method, here the better criterion for the inadequate data problem is to 
approximate the solution or the evaluation functional Q, = u(x) on c+i [a, b] by a 
linear combination of known linearly independent functionals or data {A}, 
j=l,2 ,..., n, on c” [a, b] such that the norm of the error functional 
E,=Q,-cJ’=, ajfj is minimum, i.e., the unknown coefficients {aj} must be chosen 
in such a way that 

is minimized. Since the approximate R.K. z= r oj#j E S and P,u E S is the unique 
optimal approximation of u E q”[a, b] [ 151, the minimum of I( E.J,+ 1 can be 
attained only when P,Ry,$’ = cj”= I aj#j. Hence from (2.18) 

Ci”= 1 CM- '>ji #iCx>* 

a](x) = 

Moreover, 

implies 

Lj(P,U) = Lj(U) =fj, j = 1, 2 )..., y1. 

Then we have established the following result. 
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THEOREM 4. The optimal approximation of the solution of (2.4)--(2X9 is 

U,(X) = Ps U(X) = 2 f: JX”-“)ji #Ax) (3.X> 

i=l j=l 

such that 

Lj@J =& j = 1, 2,..., n. W) 

Remark 3. Equations (3.1) and (3.2) give a projection-like method of ~~t~~~~~ 
computing the optimal approximate solution of the boundary or initial value problem 
(2,4)-(2.6) from the inadequate data {&} and the representers {#j), j = 1, 2,..., n. 
Hence this projection-like method is an unbiased method. The numerical stability of 
this method is self-evident from (3.1) except that the Gramian of (dj} may be ilh- 
conditioned. Moreover, it is obvious that ug has the minimum norm ~r~~e~~~~ 
//~pllm+1 G l/4l,+l~ for all u E c+l [a, b] such that L,(u) =fj, j = 1, 2, . . . . R. 

The error estimate of this projection-like method is, in genera& sharper than those 
of the finite difference method and the finite element method. The pointwise error 
estimate of this method is given in the following theorem, 

THEORISTS. 

given by 
The pointwise error bound of the optimal approximate ~o~~t~~~ up is 

(3.3) 

Proof: 

~~roper~y of P,) 

(Schwarz inequality on 

= RF,; ‘(xl- 2 2 #j(X>CM-‘)jt QdX> i=* j=l 

Remark 4. (3.3) shows that /u(x) - u,(x)/ < C(x) l/~l/~+, , where C(X) can be 
computed precisely. 

Due to the fact that n is a fixed small positive integer (inadequate data problem~~ 
the rate of convergence of the optimal approximate solution up as n --f 00 is ~rr~~e~a~~ 
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here. Anyway it can be easily estimated from (3.3). The rate of convergence of the 
approximate solution of a similar method can be found in [9]. Moreover, this method 
will not be a practical method for the adequate data problem, since the computational 
efficiency decreases sharply when n increases. For the case of large n, it is much 
more efficient to use any one of the finite difference methods and the finite element 
methods. 

IV. COLLOCATION-LIKE METHOD 

In general, the error estimates obtained by function-theoretical means are too 
conservative. Hence, athough the above projection-like method produces the optimal 
approximate solution of the inadequate data problem from the least amount of known 
qualitative information on the solution, in actual computation it is possible to obtain 
more accurate approximate solutions by other numerical methods. Especially, this is 
true when additional qualitative information on the solution is incorporated in the 
computational procedure. Typical qualitative information on the solution is whether 
the solution is oscillatory or non-oscillatory in a given interval of X. Unfortunately, 
the projection-like method is so rigid that it is very difficult to incorporate any 
additional known qualitative information on the solution into its numerical algorithm, 
e.g., the only adjustment for this method is to change the representers which means to 
take a different choice of spaces of functions. Hence another numerical method which 
has the flexibility of being able to incorporate the additional qualitative information 
on the solution into the computational algorithm is presented here. This method is 
collocation-like with the collocation constraints Lj(u) =fj and the optimality of the 
approximate solution has to be compromised. The approximate solution for the 
collocation-like method is given by 

(4.1) 

The basis functions { v~(x)}, i = 1, 2 ,..., II, are linearly independent and are chosen in 
such a way that the known qualitative information on the solution can be incor- 
porated into u,(x), e.g., if the solution is known to be non-oscillatory, then 
polynomials or splines of low degree should be a suitable choice for {z)~(x)]; if the 
solution is known to be oscillatory with approximately constant amplitude, then 
trigonometic functions should be a suitable choice for {ui(x)}; and if the solution is 
known to be ocillatory with variable amplitude, the functions of the type 
(x - PI” %“,“x should be a suitable choice for {vi(x)]. Hence this collocation-like 
method is a so-called biased method. The expansion coefficients {pi} are again chosen 
to minimize the norm of the error function E,, i.e., to minimize 

(4.21 
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subject to the collocation constraints, 

Lj(U,) = f  Pi J;: Lvi(xj)9 j = 1, 2,..., n, 
i=l 

Unlike the projection-like method in Section III, the collection constraints (43) 
cannot be satisfied automatically here. Moreover, unlike the standard collocation 
method, the linear system satisfied by {pi} is an over-determined system. 

In a similar manner, the pointwise error bound of u,(x) is derived as 

= C(x) lI4lm+l~ 
where C(X) can be computed precisely. 

Again due to the fact that n is a fixed small positive integer (inadequate data 
problem), the rate of convergence of the approximate solution u,(x) as n --) cc is 
irrelevant here. Anyway it can be easily estimated from (4.4) when it is needed. The 
success or failure of this method depends largely on the proper choice of the basis 
functions {vi(x)}. 

V. NUMERICAL SIMULATIONS 

No presentation of numerical methods is complete until the presented new 
algorithms are tested by performing numerical simulations to obtain their qu~titative 
numerical characteristics. By numerical simulation we mean that the numerical 
algorithm is used to solve a few simple but nontrivial test problems with known exact 
solutions and the comparison between the exact and the numerical solutions can be 
used to evaluate the performance of that particular numerical algorithm. To evaluate 
the performance of the projection-like and the collocation-like methods, for 
simplicity, we consider only the initial value problem of single first order differential 
equation. Five examples are given. One example with slow varying solution, one with 
highly oscillatory solution and one with solution having a very steep gradient (stiff 
problem) are solved by using the projection-like method, the collocation-like method, 
the first order backward Euler’s finite difference method and the second order 
trapezoidal finite difference method without interpolating the inadequate data. The 
last two examples are two similar stiff problems, one stable and one instable, which 
are solved by the projection-like method, the backward Euler’s finite diffe~eucc 
method and the trapezoidal finite difference method with two different grid sizes and 
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unbiased interpolation of the inadequate data. Numerical solutions by using any one 
of the finite element methods are ruled out due to the additional difftculty in 
computing the matrix elements by integration. 

EXAMPLE 1. 

Du+xu=x, x E [O, n], u(0) = 0, 

u(x) = 1 - exp(-x2/2). 

The inadequate date are given at x1 = 0.5712, x, = 1.1424, xJ = 1.7136, x4 = 2.2848 
and x5 = 2.8560. Hence f, = x, , fi = x2, f3 = x3, f4 = x, and f5 = x5. 

Case (A). Let u E W’z [0, n]. 
Projection-like method: From Theorems 1 and 3, the R.K. in Wg[O, rc] satisfies 

D4G,,(Y) +%,,(y) = 4Y - x)9 

R&(O) = m;,,(O) = D*R:,,(77) = m&(n) = 0. 

It has the following explicit form: 

R:,,(y) = 2[a,(y) sin yx cash yx + a*(y) cos yx sinh yx], x <Y, 

= [b,(y) eyx + b*(y) eeYX] sin yx + [b,(y) eyX + b4(y) e-“] cos yx, x > y, 

where 

ai,z( y) = $ cos(2y7r)[cos yy sinh yy F sin yy cash w] 

f sin(2yrr)[cos yy cash yy k sin yy sinh yy] + 2 
sin w  cash yy 
cos yy sinh yy 

+ sin yy cosh(2y;n - yy) F cos yy sinh(2yr - yy) , 
I 

hi,*(y) = -$- [2* sin(2yn) - cos(2yrc) + er2w] sin yy cash yy 

+ [fsin(2yn) + cos(2y71) + e’2yn] cos yy sinh yy , 
I 

b3,4(y) = f G 
! 
[2f sin(2yz) + cos(2yrc) - eTzm] cos yy sinh yy 

+ [fsin(2yz) + cos(2yz) + eFZyn] sin yy cash yy , 
I 

y = (2)-V’ and d = 16 [ sin(2yz) - sinh(2yn)l. 
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The representers can be obtained from 

249 

#j(X) = 3R2,,,(Y)/a.Y\y=xj + XjR:,,(Xj)V 3 = 1Y 2T**'3 5a 

From these representers, one can derive (AQ in a straightforward manner. 
Collocation-like method: Let vi(x) ==x2j, j = I, 2,..., 5. By the La 

multiplier method, one has PI = 0.8724, & = -0.1063, p3 = 0.0104, ,Bj = -0.0007, 
and /IS = 0.0000. 

The numerical results of the projection-like method ZC‘~,~, the co~~ocati~n-~~~~~ 
method w,, the backward Euler’s finite difference method tidEI and the trapezoidal 
finite difference method gdTl are shown in Fig. 1. 

0 1 2 3 
x 

FIG. 1. Numerical results for Du + xu, u(O) = 0, u(x) = 1 - eapj-x2/2). (x) upA tZ bV~/O, n 1, 
%B ~5 @[o, ~1; (----) u, q; (A) udE, ; (0) udr,. 
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Case (B). Let u E Wi[O, rc]. 
Projection-like method: Here the R.K. in @.[O, 7c] satisfies 

--DZ&(Y) f e,,(Y) = J(Y -xl 

R;,,(O) = m&(71) = 0. 

It has the explicit form, 

R:,,(Y) = - 
1 

cosh(z - y) cash x/cash n, x < y, 
cash y cosh(z - x)/cash z, x > y. 

The representers and (&Qj can be obtained in a manner similar to that used in Case 
(A). 

Collocation-like method: With the same uj(x) as those in Case (A), u,(x) here 
agrees with that obtained from Case (A) within four digits. 

The numerical result of this projection-like method u,, is also given in Fig. 1. 

FIG. 2. Numerical results for Du +xu= 5 cos 5x+x sin 5x, u(O)=O, u(x)=sin 5x. (X) 
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EXAMPLE 2. 

Dufxu=5cos5x+xsin5x, x E [O, n], u(0) = 0, 

24 fs wo, nl, 

u(x) = sin 5x. 

The same inadequate data points are chosen here. The R.K. and representers are the 
same as those in Example 1. For the collocation-like method, two types of basis 
(vj(x)) are chosen. Case A, vj(x) = sinjx, j = 1,2,..., 5, and then p, = ~.~QO~~ 

-200 
FIG. 3. Numerical results for Llu + 100~ = 100x - 9999, u(0) = 0, u(x) = 100 exp(-100x) i x - 

100. (x) Up E @[o, 711; (0) U, E @$[o, X]; (--) u; (A) UdEl; (0) UdTi. 
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p2 = 0.0000, & = 0.0000, /?, = 0.003 1 
j = 1, 2,..., 

and P5 = 0.4727. Case B, Uj(X) = 
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EXAMPLE 4. Stable stiff problem. 

Du + 50~ = 2500 [ 1 + tanh 10(x - 0.15)] =f(x), x E [O, n], 

u(0) = 0, u E Fv;(o, 7x1. 

The same inadequate data points are chosen. The R.K. and representers are the same 
as those in Example 1. The numerical result of the projection-like method and t 
more exact solution are given in Fig. 4. Since f, =fZ = f3 =f4 = Jf5 = 5000, the 
unbiased interpolation leads to the interpolated Y(X) = 5000, where the inter~o~at~o~ 
error is predominantly in 0 < x < 0.3. With these unbiased ~nter~oiated data and two 
different grid sizes, the numerical results of the backward Euler’s finite di~c~e~~~ 
method udE 1 (Ax = 0.57 12), udE2 (Ax = 0.057 1) and the trapezoidal finite difference 
method gdTl (Ax = 0.5712), tidTZ (Ax = 0.0571) are given in Fig. 4. The reason for 

-60 

O-0571 -667 4 29 
-80 

FIG. 5. Numerical results for Du - 50~ = 5000[ 1 - 3 exp(-20x)], = 0, = 
exp(-20x) - 100. (x) up E Wi[O, n]; (-) u; (At-j-j-A) udB, 

u(O) u(x) (~5~~/7) 
with interpolated S(X) = 5000 and 

Ax = 0.5712; (A+++A) udEz with interpolated f(x) = 5000 and Ax = 0.057 1; udTI (dx = 0.5712) and 
udT2 (Ax = 0.057 1) with interpolated f(x) = 5000 are shown in the table. 
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not showing the result of U, is because U, is always better than up when the proper 
basis is chosen. 

EXAMPLE 5. Instable stiff problem. 

Du - 50~ = 5000 (1 - 3e-*'")=f(x), x E [O, 711, 

u(0) = 0, u E w;p, n.1, 

u(x) = 100((15/7) eC*’ - 1). 

The same inadequate data points are chosen. The R.K. and representers are the same 
as those in Example 1. The numerical results of the projection-like method and the 
finite difference method without interpolation of the inadequate data are given in 
Fig. 5. Since f, = f2 =f3 = f, = fS = 5000, the unbiased interpolation leads to the 
interpolated Y(X) = 5000, where the interpolation error is predominantly in 
0 ,< x ( 0.30. With these unbiased interpolation data and two different grid sizes, the 
numerical results of the backward Euler’s finite difference method udEl (AX = 0.5712), 
udE2 (,4x = 0.0571) and the trapezoidal finite difference method udTl (Ax = 0.5712), 
udr2 (Ax = 0.0571) are given in Fig. 5. 

VI. DISCUSSION 

Example 1 shows that for this undemanding inadequate data problem, all 
numerical methods tested here have performed equally well. Moreover, this example 
also show that the performance of the projection-like method is quite sensitive to the 
choice of function spaces for the domain of the linear differential operator, while the 
collocation-like method is not. In fact, when u E P$[O, ~1, contrary to the definition 
of the representer of a bounded linear functional, {gj}, j = 1, 2,..., n, do not belong to 
w#, 711. 

For the rapidly oscillatory solution, Example 2 shows that when the basis functions 
of the collocation-like method are not chosen in the best manner, its performance is 
comparable to those poor performances of the projection-like method, the backward 
Euler’s finite difference method and the trapezoidal finite difference method. 
However, if the basis functions of the collocation-like method are properly chosen, 
i.e., to incorporate the known qualitative information on the solution into the basis 
functions, then the performance of the collocation-like method is dramatically 
improved. 

Example 3 shows that the performances of the projection-like method, the 
collocation-like method and the backward Euler’s finite difference method are far 
superior to that of the trapezoidal finite difference method which gives an unstable 
numerical solution for this stiff problem. Hence here is an example for showing the 
deficiencies of the local truncation error analysis. 
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The main purpose of Example 4 here is to point out that sometimes the finite 
difference methods with unbiased interpolation of the inadequate data can lead to 
erroneous solutions. For simplicity, a simple linear stable stiff problem is chosen, i-e., 
the solution is stable against a small perturbation in f(x). In this example, the inter- 
polation error is predominantly in 0 <x < 0.3. As one expects for the solution of a 
stable linear system, the error of the solution due to the error of interpolation is also 
predominantly in 0 <x ( 0.3. However, the performance of the projection-like 
method in the same interval 0 < x ( 0.3 is superior to that of the first order backward 
Euler’s finite difference method with both fine and coarse grids. Similarly, the perfos- 
mance of the backward Euler’s method is superior to that of the second order 
trapezoidal finite difference method. Hence, here is another example showing the 
deficiency of the local truncation error analysis. 

Example 5 is chosen to point out that even for an instable stiff problem with inade- 
quate date, the projection-like method works reasonably well where as the finite 
difference methods with unbiased interpolation of the inadequate data either perform 
poorly or fail. In this example, the interpolation error is predomi~anti~ in a small 
interval 0 <x < 0.3. In this interval, the error of the approximate solution obtained 
by using the baclward Euler’s finite difference method is reasonably small for the 
coarse grid but large for the fine grid. Moreover, the trapezoidal finite d~ffer~~~e 
method fails miserably. Again, here is another example showing the deficiency of the 
local truncation error analysis. 

The above numerical simulations have clearly indicated that both the unbiased 
projection-bike method and the slightly biased collocation-like method are superior to 
either the finite difference methods or the finite element methods for solving the 
inadequate data problem. They have also shown that the finite difference methods 
with lower order accuracy are superior to higher order finite difference methods for 
sohing the inadequate date problem. IBecause of the flexibility of the collocation-1~~~ 
method it has a few advantages over the projection-like method. First, the known 
qualitative information on the solution can be incorporated into the ~~m~~tat~~~a~ 
algorithm. Second, it is not sensitive to the choice of the function space for the 
domain of the linear differential operator. Hence in order to minimize the effort 
needed for setting up the computational algorithm, one likes to use the Sobolev space 
of lowest possible order for the domain of the linear differential operator even if 
sometimes the representers are not in the proper function space. Finally, from the 
computational efficiency point of view the collocation-like method may be more 
eficient, for only one 2n X II rectangular matrix has to ‘be inverted once regardless of 
the number of points of interest where U,(X) has to be computed, while for the 
projection-like method at every point an M x ,V matrix has to be inverted in rhe 
process of computing up(x). 

A common drawback of the projection-like method and the collocation-like me&d 
is the tremendous effort needed to construct the 
makes the preparatory work in the computational 
this is not as bad as one might first think, for only one 
differential equations of the same order. Hence on 
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all differential equations of different order. The real diffkulty for these methods is to 
generalize them to higher dimensional problems with complex geometry where the 
exact R.K. cannot be constructed. 
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